Main index Other Papers index About author

Csc and Sec in Surds

Julian D. A. Wiseman

Contents: values of Cosecant[α] = Cosec[α] = Csc[α] = 1/Sin[α] and Secant[α] = Sec[α] = 1/Cos[α], expressed in surds, for α=n×3° or α=n×5⅝°, n∈ℕ: Csc[0°], Csc[3°], Csc[5.625°], Csc[6°], Csc[9°], Csc[11.25°], Csc[12°], Csc[15°], Csc[16.875°], Csc[18°], Csc[21°], Csc[22.5°], Csc[24°], Csc[27°], Csc[28.125°], Csc[30°], Csc[33°], Csc[33.75°], Csc[36°], Csc[39°], Csc[39.375°], Csc[42°], Csc[45°], Csc[48°], Csc[50.625°], Csc[51°], Csc[54°], Csc[56.25°], Csc[57°], Csc[60°], Csc[61.875°], Csc[63°], Csc[66°], Csc[67.5°], Csc[69°], Csc[72°], Csc[73.125°], Csc[75°], Csc[78°], Csc[78.75°], Csc[81°], Csc[84°], Csc[84.375°], Csc[87°], and Csc[90°].

Publication history: only here. Usual disclaimer and copyright terms apply. Also see the values of Sin[] and Cos[], in surds, the values of Tan[] in surds, and the inner radius of n/m stars, in surds.


The table shows Cosecant[] = Cosec[] = Csc[] = 1/Sin[] and Secant[] = Sec[] = 1/Cos[] in surds, for angles that are integer multiples of 3° or of 5⅝° = 90°/16. The surds are derived from the table of values of Sin[] and Cos[] in surds, and are shown in several formats.

Help! Endeavours have been made to represent these values as simply as possible. But further simplifications would be welcomed, credit being given.

Errors: whilst the outputs have been tested, it is possible that errors remain. Please do test things before embedding them somewhere important—and if errors or possible improvements are found, tell the author.

Csc[α] = Sec[90–α]Graphical formulaLaTeXExcelCalcCenterPostScript
Csc[0°] = Sec[90°] = ±∞Csc(0°)\pm\infty=(2^53 - 1) * (2^971)±Infinity2 23 exp 1 sub 2 104 exp mul
Csc[3°] = Sec[87°] ≈ 19.107322609297Csc(3°)\sqrt{4 + \left(8 + 5 \sqrt{3}\right) \left(2 + \sqrt{5}\right)} + \frac{\sqrt{2}}{2} \left(\left(2 + \sqrt{5}\right) \left(2 + \sqrt{3}\right) - 1\right)=Sqrt(4+(8+5*Sqrt(3))*(2+Sqrt(5))) + ((2+Sqrt(5))*(2+Sqrt(3))-1)*Sqrt(2)/2Sqrt[4+(8+5 Sqrt[Int3]) (2+Sqrt[Int5])] + ((2+Sqrt[Int5]) (2+Sqrt[Int3])-1) Sqrt[Int2]/23 sqrt 5 sqrt 2 copy 2 add exch 2 add exch mul 1 sub 2 sqrt mul 2 div 3 1 roll 2 add exch 5 mul 8 add mul 4 add sqrt add
Csc[5⅝°] = Sec[84⅜°] ≈ 10.202297237378Csc(5.625°)\sqrt{2 \left(2 + \sqrt{2}\right) \left(2 + \sqrt{2 + \sqrt{2}}\right) \left(2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}\right)}=Sqrt( 2 * (2+Sqrt(2)) * (2+Sqrt(2+Sqrt(2))) * (2+Sqrt(2+Sqrt(2+Sqrt(2)))) )Sqrt[ 2 (2+Sqrt[Int2]) (2+Sqrt[2+Sqrt[Int2]]) (2+Sqrt[2+Sqrt[2+Sqrt[Int2]]]) ]2 sqrt 2 add dup sqrt 2 add dup sqrt 2 add mul mul 2 mul sqrt
Csc[6°] = Sec[84°] ≈ 9.566772233506Csc(6°)\left(2 + \sqrt{5} + \sqrt{15 + 6 \sqrt{5}}\right)=( 2 + Sqrt(5) + Sqrt(15+6*Sqrt(5)) )( 2 + Sqrt[Int5] + Sqrt[15+6 Sqrt[Int5]] )5 sqrt dup 6 mul 15 add sqrt add 2 add
Csc[9°] = Sec[81°] ≈ 6.3924532215Csc(9°)\frac{\sqrt{2}}{2} \left(3 + \sqrt{5} + \sqrt{10 + 2 \sqrt{5}}\right)=( 3 + Sqrt(5) + Sqrt(10+2*Sqrt(5)) ) * Sqrt(2) / 2( 3 + Sqrt[Int5] + Sqrt[10+2 Sqrt[Int5]] ) Sqrt[Int2] / 25 sqrt dup 2 mul 10 add sqrt add 3 add 2 sqrt mul 2 div
Csc[11¼°] = Sec[78¾°] ≈ 5.125830895483Csc(11.25°)\sqrt{2 \left(2 + \sqrt{2}\right) \left(2 + \sqrt{2 + \sqrt{2}}\right)}=Sqrt( 2 * (2+Sqrt(2)) * (2+Sqrt(2+Sqrt(2))) )Sqrt[ 2 (2+Sqrt[Int2]) (2+Sqrt[2+Sqrt[Int2]]) ]2 sqrt 2 add dup sqrt 2 add mul 2 mul sqrt
Csc[12°] = Sec[78°] ≈ 4.809734344744Csc(12°)\sqrt{3} + \sqrt{5 + 2 \sqrt{5}}=Sqrt(3) + Sqrt(5+2*Sqrt(5))Sqrt[Int3] + Sqrt[5+2 Sqrt[Int5]]5 sqrt 2 mul 5 add sqrt 3 sqrt add
Csc[15°] = Sec[75°] ≈ 3.863703305156Csc(15°)\sqrt{2} \left(\sqrt{3} + 1\right)=Sqrt(2)*(Sqrt(3)+1)Sqrt[Int2] (Sqrt[Int3]+1)3 sqrt 1 add 2 sqrt mul
Csc[16⅞°] = Sec[73⅛°] ≈ 3.444894196477Csc(16.875°)\sqrt{2 \left(2 - \sqrt{2}\right) \left(2 + \sqrt{2 - \sqrt{2}}\right) \left(2 + \sqrt{2 + \sqrt{2 - \sqrt{2}}}\right)}=Sqrt( 2 * (2-Sqrt(2)) * (2+Sqrt(2-Sqrt(2))) * (2+Sqrt(2+Sqrt(2-Sqrt(2)))) )Sqrt[ 2 (2-Sqrt[Int2]) (2+Sqrt[2-Sqrt[Int2]]) (2+Sqrt[2+Sqrt[2-Sqrt[Int2]]]) ]2 2 sqrt sub dup sqrt 2 add dup sqrt 2 add mul mul 2 mul sqrt
Csc[18°] = Sec[72°] ≈ 3.2360679775Csc(18°)\sqrt{5} + 1=Sqrt(5)+1Sqrt[Int5]+15 sqrt 1 add
Csc[21°] = Sec[69°] ≈ 2.790428109625Csc(21°)\sqrt{4 + \left(\sqrt{5} - 2\right) \left(5 \sqrt{3} - 8\right)} + \frac{\sqrt{2}}{2} \left(1 + \left(2 - \sqrt{3}\right) \left(\sqrt{5} - 2\right)\right)=Sqrt(4+(Sqrt(5)-2)*(5*Sqrt(3)-8)) + (1+(2-Sqrt(3))*(Sqrt(5)-2))*Sqrt(2)/2Sqrt[4+(Sqrt[Int5]-2) (5 Sqrt[Int3]-8)] + (1+(2-Sqrt[Int3]) (Sqrt[Int5]-2)) Sqrt[Int2]/25 sqrt 2 sub 3 sqrt 2 copy 5 mul 8 sub mul 4 add sqrt 3 1 roll 2 sub neg mul 1 add 2 sqrt mul 2 div add
Csc[22½°] = Sec[67½°] ≈ 2.613125929753Csc(22.5°)\sqrt{4 + 2 \sqrt{2}}=Sqrt(4+2*Sqrt(2))Sqrt[4+2 Sqrt[Int2]]2 sqrt 2 mul 4 add sqrt
Csc[24°] = Sec[66°] ≈ 2.458593335574Csc(24°)\sqrt{3} + \sqrt{5 - 2 \sqrt{5}}=Sqrt(3)+Sqrt(5-2*Sqrt(5))Sqrt[Int3]+Sqrt[5-2 Sqrt[Int5]]5 sqrt -2 mul 5 add sqrt 3 sqrt add
Csc[27°] = Sec[63°] ≈ 2.202689264585Csc(27°)\sqrt{5 - \sqrt{5}} + \frac{\sqrt{2}}{2} \left(3 - \sqrt{5}\right)=Sqrt(5-Sqrt(5)) + (3-Sqrt(5))*Sqrt(2)/2Sqrt[5-Sqrt[Int5]] + (3-Sqrt[Int5]) Sqrt[Int2]/25 sqrt dup 3 sub neg 2 sqrt mul 2 div exch 5 sub neg sqrt add
Csc[28⅛°] = Sec[61⅞°] ≈ 2.121355371981Csc(28.125°)\sqrt{2 \left(2 - \sqrt{2}\right) \left(2 - \sqrt{2 - \sqrt{2}}\right) \left(2 + \sqrt{2 - \sqrt{2 - \sqrt{2}}}\right)}=Sqrt( 2 * (2-Sqrt(2)) * (2-Sqrt(2-Sqrt(2))) * (2+Sqrt(2-Sqrt(2-Sqrt(2)))) )Sqrt[ 2 (2-Sqrt[Int2]) (2-Sqrt[2-Sqrt[Int2]]) (2+Sqrt[2-Sqrt[2-Sqrt[Int2]]]) ]2 2 sqrt sub dup sqrt 2 sub neg dup sqrt 2 add mul mul 2 mul sqrt
Csc[30°] = Sec[60°] = 2Csc(30°)2222
Csc[33°] = Sec[57°] ≈ 1.836078458777Csc(33°)\frac{1}{4} \left(2 \sqrt{2} \left(\left(\sqrt{3} + 2\right) \left(\sqrt{5} + 2\right) - 1\right) - \left(4 + \left(\sqrt{3} + 1\right) \left(\sqrt{5} + 1\right)\right) \sqrt{\sqrt{5} + 5}\right)=( 2*Sqrt(2)*((Sqrt(3)+2)*(Sqrt(5)+2)-1) - (4+(Sqrt(3)+1)*(Sqrt(5)+1))*Sqrt(Sqrt(5)+5) ) / 4( 2 Sqrt[Int2] ((Sqrt[Int3]+2) (Sqrt[Int5]+2)-1) - (4+(Sqrt[Int3]+1) (Sqrt[Int5]+1)) Sqrt[Sqrt[Int5]+5] ) / 45 sqrt dup 3 sqrt 2 copy 2 add exch 2 add mul 1 sub 2 sqrt mul 2 mul 4 1 roll 1 add exch 1 add mul 4 add exch 5 add sqrt mul sub 4 div
Csc[33¾°] = Sec[56¼°] ≈ 1.799952446273Csc(33.75°)\sqrt{2 \left(2 - \sqrt{2}\right) \left(2 + \sqrt{2 - \sqrt{2}}\right)}=Sqrt( 2 * (2-Sqrt(2)) * (2+Sqrt(2-Sqrt(2))) )Sqrt[ 2 (2-Sqrt[Int2]) (2+Sqrt[2-Sqrt[Int2]]) ]2 2 sqrt sub dup sqrt 2 add mul 2 mul sqrt
Csc[36°] = Sec[54°] ≈ 1.701301616704Csc(36°)\sqrt{2 + \frac{2}{5}\sqrt{5}}=Sqrt(2+Sqrt(5)*2/5)Sqrt[2+Sqrt[Int5] 2/5]2 5 sqrt 2 mul 5 div add sqrt
Csc[39°] = Sec[51°] ≈ 1.589015729066Csc(39°)\frac{1}{4} \left(2 \sqrt{2} \left(\left(\sqrt{3} + 2\right) \left(\sqrt{5} - 2\right) + 1\right) + \left(4 - \left(\sqrt{3} + 1\right) \left(\sqrt{5} - 1\right)\right) \sqrt{5 - \sqrt{5}}\right)=( 2*Sqrt(2)*((Sqrt(3)+2)*(Sqrt(5)-2)+1) + (4-(Sqrt(3)+1)*(Sqrt(5)-1))*Sqrt(5-Sqrt(5)) ) / 4( 2 Sqrt[Int2] ((Sqrt[Int3]+2) (Sqrt[Int5]-2)+1) + (4-(Sqrt[Int3]+1) (Sqrt[Int5]-1)) Sqrt[5-Sqrt[Int5]] ) / 45 sqrt dup 3 sqrt 2 copy 2 add exch 2 sub mul 1 add 2 sqrt mul 2 mul 4 1 roll 1 add exch 1 sub mul 4 sub neg exch 5 sub neg sqrt mul add 4 div
Csc[39⅜°] = Sec[50⅝°] ≈ 1.576309246903Csc(39.375°)\sqrt{2 \left(2 + \sqrt{2}\right) \left(2 - \sqrt{2 + \sqrt{2}}\right) \left(2 + \sqrt{2 - \sqrt{2 + \sqrt{2}}}\right)}=Sqrt( 2 * (2+Sqrt(2)) * (2-Sqrt(2+Sqrt(2))) * (2+Sqrt(2-Sqrt(2+Sqrt(2)))) )Sqrt[ 2 (2+Sqrt[Int2]) (2-Sqrt[2+Sqrt[Int2]]) (2+Sqrt[2-Sqrt[2+Sqrt[Int2]]]) ]2 sqrt 2 add dup sqrt 2 exch sub dup sqrt 2 add mul mul 2 mul sqrt
Csc[42°] = Sec[48°] ≈ 1.494476549865Csc(42°)\sqrt{15 - 6 \sqrt{5}} + \sqrt{5} - 2=Sqrt(15-6*Sqrt(5)) + Sqrt(5) - 2Sqrt[15-6 Sqrt[Int5]] + Sqrt[Int5] - 25 sqrt dup -6 mul 15 add sqrt add 2 sub
Csc[45°] = Sec[45°] ≈ 1.414213562373Csc(45°)\sqrt{2}=Sqrt(2)Sqrt[Int2]2 sqrt
Csc[48°] = Sec[42°] ≈ 1.345632729606Csc(48°)\sqrt{5 + 2 \sqrt{5}} - \sqrt{3}=Sqrt(5+2*Sqrt(5)) - Sqrt(3)Sqrt[5+2 Sqrt[Int5]] - Sqrt[Int3]5 sqrt 2 mul 5 add sqrt 3 sqrt sub
Csc[50⅝°] = Sec[39⅜°] ≈ 1.29364356672Csc(50.625°)\sqrt{2 \left(2 + \sqrt{2}\right) \left(2 - \sqrt{2 + \sqrt{2}}\right) \left(2 - \sqrt{2 - \sqrt{2 + \sqrt{2}}}\right)}=Sqrt( 2 * (2+Sqrt(2)) * (2-Sqrt(2+Sqrt(2))) * (2-Sqrt(2-Sqrt(2+Sqrt(2)))) )Sqrt[ 2 (2+Sqrt[Int2]) (2-Sqrt[2+Sqrt[Int2]]) (2-Sqrt[2-Sqrt[2+Sqrt[Int2]]]) ]2 sqrt 2 add dup sqrt 2 exch sub dup sqrt 2 exch sub mul mul 2 mul sqrt
Csc[51°] = Sec[39°] ≈ 1.286759565893Csc(51°)\frac{1}{4} \left(2 \sqrt{2} \left(\left(\sqrt{3} - 2\right) \left(\sqrt{5} - 2\right) - 1\right) + \left(4 + \left(\sqrt{3} - 1\right) \left(\sqrt{5} - 1\right)\right) \sqrt{5 - \sqrt{5}}\right)=( 2*Sqrt(2)*((Sqrt(3)-2)*(Sqrt(5)-2)-1) + (4+(Sqrt(3)-1)*(Sqrt(5)-1))*Sqrt(5-Sqrt(5)) ) / 4( 2 Sqrt[Int2] ((Sqrt[Int3]-2) (Sqrt[Int5]-2)-1) + (4+(Sqrt[Int3]-1) (Sqrt[Int5]-1)) Sqrt[5-Sqrt[Int5]] ) / 45 sqrt dup 3 sqrt 2 copy 2 sub exch 2 sub mul 1 sub 2 sqrt mul 2 mul 4 1 roll 1 sub exch 1 sub mul 4 add exch 5 sub neg sqrt mul add 4 div
Csc[54°] = Sec[36°] ≈ 1.2360679775Csc(54°)\sqrt{5} - 1=Sqrt(5)-1Sqrt[Int5]-15 sqrt 1 sub
Csc[56¼°] = Sec[33¾°] ≈ 1.20268977387Csc(56.25°)\sqrt{2 \left(2 - \sqrt{2}\right) \left(2 - \sqrt{2 - \sqrt{2}}\right)}=Sqrt( 2 * (2-Sqrt(2)) * (2-Sqrt(2-Sqrt(2))) )Sqrt[ 2 (2-Sqrt[Int2]) (2-Sqrt[2-Sqrt[Int2]]) ]2 2 sqrt sub dup sqrt 2 sub neg mul 2 mul sqrt
Csc[57°] = Sec[33°] ≈ 1.192363292836Csc(57°)\frac{1}{4} \left(2 \sqrt{2} \left(\left(2 - \sqrt{3}\right) \left(\sqrt{5} + 2\right) - 1\right) + \left(4 - \left(\sqrt{3} - 1\right) \left(\sqrt{5} + 1\right)\right) \sqrt{\sqrt{5} + 5}\right)=( 2*Sqrt(2)*((2-Sqrt(3))*(Sqrt(5)+2)-1) + (4-(Sqrt(3)-1)*(Sqrt(5)+1))*Sqrt(Sqrt(5)+5) ) / 4( 2 Sqrt[Int2] ((2-Sqrt[Int3]) (Sqrt[Int5]+2)-1) + (4-(Sqrt[Int3]-1) (Sqrt[Int5]+1)) Sqrt[Sqrt[Int5]+5] ) / 45 sqrt dup 3 sqrt 2 copy 2 sub neg exch 2 add mul 1 sub 2 sqrt mul 2 mul 4 1 roll 1 sub exch 1 add mul 4 sub neg exch 5 add sqrt mul add 4 div
Csc[60°] = Sec[30°] ≈ 1.154700538379Csc(60°)\frac{2}{3}\sqrt{3}=Sqrt(3)*2/3Sqrt[Int3] 2/33 sqrt 2 mul 3 div
Csc[61⅞°] = Sec[28⅛°] ≈ 1.133888069633Csc(61.875°)\sqrt{2 \left(2 - \sqrt{2}\right) \left(2 - \sqrt{2 - \sqrt{2}}\right) \left(2 - \sqrt{2 - \sqrt{2 - \sqrt{2}}}\right)}=Sqrt( 2 * (2-Sqrt(2)) * (2-Sqrt(2-Sqrt(2))) * (2-Sqrt(2-Sqrt(2-Sqrt(2)))) )Sqrt[ 2 (2-Sqrt[Int2]) (2-Sqrt[2-Sqrt[Int2]]) (2-Sqrt[2-Sqrt[2-Sqrt[Int2]]]) ]2 2 sqrt sub dup sqrt 2 sub neg dup sqrt 2 sub neg mul mul 2 mul sqrt
Csc[63°] = Sec[27°] ≈ 1.122326237634Csc(63°)\sqrt{5 - \sqrt{5}} - \frac{\sqrt{2}}{2} \left(3 - \sqrt{5}\right)=Sqrt(5-Sqrt(5)) - (3-Sqrt(5))*Sqrt(2)/2Sqrt[5-Sqrt[Int5]] - (3-Sqrt[Int5]) Sqrt[Int2]/25 sqrt neg dup 5 add sqrt exch 3 add 2 sqrt mul 2 div sub
Csc[66°] = Sec[24°] ≈ 1.094636278506Csc(66°)\sqrt{15 + 6 \sqrt{5}} - \sqrt{5} - 2=Sqrt(15+6*Sqrt(5)) - Sqrt(5) - 2Sqrt[15+6 Sqrt[Int5]] - Sqrt[Int5] - 25 sqrt dup 6 mul 15 add sqrt exch sub 2 sub
Csc[67½°] = Sec[22½°] ≈ 1.082392200292Csc(67.5°)\sqrt{4 - 2 \sqrt{2}}=Sqrt(4-2*Sqrt(2))Sqrt[4-2 Sqrt[Int2]]4 2 sqrt 2 mul sub sqrt
Csc[69°] = Sec[21°] ≈ 1.071144993637Csc(69°)\frac{\sqrt{2}}{2} \left(1 + \left(2 + \sqrt{3}\right) \left(\sqrt{5} - 2\right)\right) - \sqrt{4 - \left(\sqrt{5} - 2\right) \left(5 \sqrt{3} + 8\right)}=(1+(2+Sqrt(3))*(Sqrt(5)-2))*Sqrt(2)/2 - Sqrt(4-(Sqrt(5)-2)*(5*Sqrt(3)+8))(1+(2+Sqrt[Int3]) (Sqrt[Int5]-2)) Sqrt[Int2]/2 - Sqrt[4-(Sqrt[Int5]-2) (5 Sqrt[Int3]+8)]5 sqrt 2 sub 3 sqrt 2 copy 2 add mul 1 add 2 sqrt mul 2 div 3 1 roll 5 mul 8 add mul 4 sub neg sqrt sub
Csc[72°] = Sec[18°] ≈ 1.051462224238Csc(72°)\sqrt{2 - \frac{2}{5}\sqrt{5}}=Sqrt(2-Sqrt(5)*2/5)Sqrt[2-Sqrt[Int5] 2/5]2 5 sqrt 2 mul 5 div sub sqrt
Csc[73⅛°] = Sec[16⅞°] ≈ 1.044997229879Csc(73.125°)\sqrt{2 \left(2 - \sqrt{2}\right) \left(2 + \sqrt{2 - \sqrt{2}}\right) \left(2 - \sqrt{2 + \sqrt{2 - \sqrt{2}}}\right)}=Sqrt( 2 * (2-Sqrt(2)) * (2+Sqrt(2-Sqrt(2))) * (2-Sqrt(2+Sqrt(2-Sqrt(2)))) )Sqrt[ 2 (2-Sqrt[Int2]) (2+Sqrt[2-Sqrt[Int2]]) (2-Sqrt[2+Sqrt[2-Sqrt[Int2]]]) ]2 2 sqrt sub dup sqrt 2 add dup sqrt 2 sub neg mul mul 2 mul sqrt
Csc[75°] = Sec[15°] ≈ 1.03527618041Csc(75°)\sqrt{2} \left(\sqrt{3} - 1\right)=Sqrt(2)*(Sqrt(3)-1)Sqrt[Int2] (Sqrt[Int3]-1)3 sqrt 1 sub 2 sqrt mul
Csc[78°] = Sec[12°] ≈ 1.022340594865Csc(78°)2 - \sqrt{5} + \sqrt{15 - 6 \sqrt{5}}=2 - Sqrt(5) + Sqrt(15-6*Sqrt(5))2 - Sqrt[Int5] + Sqrt[15-6 Sqrt[Int5]]5 sqrt dup -6 mul 15 add sqrt sub neg 2 add
Csc[78¾°] = Sec[11¼°] ≈ 1.019591158208Csc(78.75°)\sqrt{2 \left(2 + \sqrt{2}\right) \left(2 - \sqrt{2 + \sqrt{2}}\right)}=Sqrt( 2 * (2+Sqrt(2)) * (2-Sqrt(2+Sqrt(2))) )Sqrt[ 2 (2+Sqrt[Int2]) (2-Sqrt[2+Sqrt[Int2]]) ]2 sqrt 2 add dup sqrt 2 sub neg mul 2 mul sqrt
Csc[81°] = Sec[9°] = 1.012465125788Csc(81°)\frac{\sqrt{2}}{2} \left(3 + \sqrt{5} - \sqrt{10 + 2 \sqrt{5}}\right)=( 3 + Sqrt(5) - Sqrt(10+2*Sqrt(5)) ) * Sqrt(2) / 2( 3 + Sqrt[Int5] - Sqrt[10+2 Sqrt[Int5]] ) Sqrt[Int2] / 25 sqrt dup 2 mul 10 add sqrt sub 3 add 2 sqrt mul 2 div
Csc[84°] = Sec[6°] ≈ 1.005508279564Csc(84°)\sqrt{3} - \sqrt{5 - 2 \sqrt{5}}=Sqrt(3) - Sqrt(5-2*Sqrt(5))Sqrt[Int3] - Sqrt[5-2 Sqrt[Int5]]3 sqrt 5 5 sqrt 2 mul sub sqrt sub
Csc[84⅜°] = Sec[5⅝°] ≈ 1.004838572376Csc(84.375°)\sqrt{2 \left(2 + \sqrt{2}\right) \left(2 + \sqrt{2 + \sqrt{2}}\right) \left(2 - \sqrt{2 + \sqrt{2 + \sqrt{2}}}\right)}=Sqrt( 2 * (2+Sqrt(2)) * (2+Sqrt(2+Sqrt(2))) * (2-Sqrt(2+Sqrt(2+Sqrt(2)))) )Sqrt[ 2 (2+Sqrt[Int2]) (2+Sqrt[2+Sqrt[Int2]]) (2-Sqrt[2+Sqrt[2+Sqrt[Int2]]]) ]2 sqrt 2 add dup sqrt 2 add dup sqrt 2 sub neg mul mul 2 mul sqrt
Csc[87°] = Sec[3°] ≈ 1.001372345998Csc(87°)\frac{1}{4} \left(2 \sqrt{2} \left(1 - \left(2 - \sqrt{3}\right) \left(2 + \sqrt{5}\right)\right) + \left(4 - \left(\sqrt{3} - 1\right) \left(\sqrt{5} + 1\right)\right) \sqrt{\sqrt{5} + 5}\right)=( 2*Sqrt(2)*(1-(2-Sqrt(3))*(2+Sqrt(5))) + (4-(Sqrt(3)-1)*(Sqrt(5)+1))*Sqrt(Sqrt(5)+5) ) / 4( 2 Sqrt[Int2] (1-(2-Sqrt[Int3]) (2+Sqrt[Int5])) + (4-(Sqrt[Int3]-1) (Sqrt[Int5]+1)) Sqrt[Sqrt[Int5]+5] ) / 45 sqrt dup 3 sqrt 2 copy 2 sub exch 2 add mul 1 add 2 sqrt mul 2 mul 4 1 roll 1 sub exch 1 add mul 4 sub neg exch 5 add sqrt mul add 4 div
Csc[90°] = Sec[0°] = 1Csc(90°)1111

Julian D. A. Wiseman, June 2008


Main index Top About author